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Abstract

The Solow model of economic growth is briefly explained, as is the principle of general meth-
ods of moments estimation. Methods are then derived to estimate and test the shrinking
parameter in a simple model of growth. The data are a panel of 56 countries with each 124
annual observations, but with a fair percentage missing observations. The methods of esti-
mation are adapted to this incomplete panel by splitting incomplete time series into smaller
ones. Weighted GMM is compared to unweigted least squares. We find considerable small
sample bias in the former method. Finally, the hypothesis of a unit root cannot be rejected.

* The author wishes to thank Tom Wansbeek for fruitful comments. Any remaining errors
are mine.



1 Growth: economic theory and econometric practice

In this section, we will first take a brief look at the theory of economic growth. Several
theories offer hypotheses about the behavior of a country’s output in time. These hypotheses
have all been confronted with economic data before. In the second part of this section, we
will look at the different ways in which hypotheses have been tested.

1.1 The theory of economic growth

A lot has changed since 1896. After a century of continuous changes in the way people live,
work and think, we find ourselves in a situation that is very much different from the last fin de
siecle. Undeniably, progress has taken place in a lot of different ways. One of the most visible
changes is a large increase in production. If we were to compare the amount of goods and
services each Dutch person, on average, produces every year we would find that this amount
has grown at a rate of approximately 1.7 % since 1896. Add to that an average population
growth of 1.2 % per year, and we find that our total annual production is more than 15 times
that of a century ago.

The theory of economic growth tries to identify the sources of this increase in production.
At the root, economic growth comes from an increase in production capacity. This capacity
is determined by a number of constraints. First, increments in the size of the population
and its productive component, the labor force, are a continuous source of growth. Secondly,
the amount of capital goods accumulated accounts for an important part of the capacity to
produce. Thirdly, the state of technology determines the productivity of labor and capital.
Technological progress can enhance our abilities to produce goods and services. As a fourth
component of the production capacity, the economic institutional environment is often in-
cluded. Political stability and well-defined rights and duties stimulate prosperity. A fifth
constraint for economic growth is the amount of human capital present; this incorporates
the fact that an uneducated labor force is not usually as productive as a group of educated
workers.

1.1.1 The Solow model

The implications of the different sources of growth can be readily understood with the help
of a rather simple mathematical model. The following was first published by Robert Solow in
1956, but it remains at the centre of much of today’s research. We will assume a production
function for a closed economy that incorporates the country’s capital stock K%, its labor force
L; and its level of technology A, all at time t.

Y; = F(A, Ly, Ky) (1)

Production can be used for two purposes, consumption and capital accumulation. The pro-
portion that is used for the latter is denoted by s, the saving rate. It is assumed fixed and
exogenous. Capital depreciation is modelled as the annual disappearance of a fraction § of
the entire stock.

dK,
d—tt = sY; — 6K, (2)

The rate of population growth and the rate of growth of A;, the level of technology, are taken
fixed and exogenous at n and x, respectively. The production function F(-) is neoclassical: it



exhibits positive and diminishing marginal products with respect to K and L, has constant

returns to scale and satisfies the Inada conditions!.

1.1.2 Steady state and dynamic behavior

In general, technological growth is taken to be of the labor augmenting form. This means
that F(Ay, Ly, K¢) can be written as F(A; - Ly, Ky). Now introduce the following notation:
for a variable Y, the per capita value Y/L is written as y. The value of Y per effective unit
of labor, Y/(A - L), is denoted g. Because of the assumed constant returns to scale, we can
rewrite (1) as

g = F ki, 1) = f(kr) (3)
Using (2) and the chain rule for differentiating, we find that

N = sf(kt) — (8 +x+n)ky (4)
Because of the regularity conditions we imposed on F(-), there are two values of k for which
the expression in (4) is zero: k = 0 and another positive value k*. Tt is easy to see that there
must hold j—"{(k*) < 1. Therefore, the following must be true:

and we can see that, regardless of the value of l%o, the economy will move toward a steady
state at which l%t = k>

We can see three sources of economic growth at work here. First, if we assume that in
the initial state of affairs ko < l;:*, we see an increase in k through time. By relation (3),
we see that this means an increase in ¢;. Second, in the steady state, §; is constant. This
means, however, that per capita production y; is growing at rate x because of technological
improvements. Thirdly, population growth contributes to the fact that total production Y; is
growing at rate x + n in the steady state.

1.1.3 Convergence

If we now compare two closed economies ¢ and j and assume, following Solow, that the
coefficients z, n, 6 and s are the same in both countries, we can deduce that both economies
will end up in the same steady state in which k; = k*. This will happen regardless of the
initial values lgri70 and 'I;j,O-

If we want to quantify the rate of convergence, that is, how quickly the economies are
approaching their steady state, we need to specify the production function in formula (1).
Supposing we use a Cobb-Douglas form, we would get:

Y, = A LIOKY (5)

IThese conditions are: limx—_.o (Fr) =limp—o(Fr) = 00 and limg—co(Frx) = limr—oe (FL) =0



Defining Vi, 88 the rate of growth of l%t, that is, dk;/ dt, we can use equation (4) to write
t

W, = sAMk T — (x4 +6) (6)

If we now assume that k; is close enough to k* to approximate equation (5) with a first order
Taylor series after rewriting it as a function of log (k;), we find that

~

k
wktz—(l—a)(x—kn—ké)logl%—i (7)

The coefficient (1 — «)(x 4+ n + §) is usually termed [ in growth economics. It is a measure
of the speed of convergence; the bigger 3, the faster an economy will move toward the steady
state.

1.2 Testing the convergence hypothesis

The strong result of the preceding paragraph, that the per capita level of the GDP of different
countries converges in time, can be qualified to some extent. Namely, if the values of the
parameters 6, n and s vary over countries, then so will the values of k*. A weaker version
of the convergence hypothesis called conditional convergence is defined as the situation in
which GDP per capita, conditional on the values of §, n and s, shows convergence. Both
the absolute and conditional convergence hypothesis have been tested extensively and in a
number of ways. In general, three different hypotheses are distinguished:

1. B-convergence is defined as a situation in which poor countries in general grow faster
than rich countries, so that there is a genuine ‘catch-up’ process. Tests of this hypothesis
are known as ‘Barro-regressions’

2. o-convergence means that the variance of the variable GDP per capita in a sample of
countries decreases over time.

3. Unit root tests search for non-stationarity in (possibly detrended) time series of GDP
per capita. These tests can be done for whole panels as well as single countries. Finding
a unit root is seen as an indication that no convergence is taking place.

The different tests are discussed in the following sub-paragraphs.

1.2.1 Barro-regressions

Economists Mankiw, Romer and Weil (MRW) started their 1992 article with a much quoted
remark about ‘taking Solow seriously’, in face of growing scepticism about the model. It is one
of the best known articles in which so-called ‘Barro-regressions’ are done. These regressions
take the form
In %) — X0+ Mn(yo) + ex (8)

with X containing variables that explain the level of the steady state. It is taken as evidence
in support of the convergence hypothesis if A is significantly negative, as this would indicate
that countries with a low GDP per capita generally grow faster than richer countries.

The findings of MRW and most other authors using these techniques can be summarized
as follows:



e If unconditional convergence is tested (leaving X out of the equation) A is only signifi-
cantly negative in small, coherent subsets of countries like the OECD. For big samples,
like all the countries in the world, the hypothesis A = 0 cannot be rejected. When test-
ing convergence conditional on a number of country-specific regressors, a significantly
negative A is found.

Conditional on each country’s savings, population growth and stock of human capital (proxied
by the number of people in secondary school) the estimated A is —0.289 [0.062], implying a
(B of 0.0137. The authors take this as proof of conditional convergence. Within the OECD,
{3 is as much as 0.0203 [0.002]. The results indicating a negative value of A are generally
known as results implying 3-convergence. It is the view of a great many authors that 3-
convergence is a real world phenomenon. This does not neccesarily imply that o-convergence
is, though. Mathematically, it can be shown that (-convergence is only a neccesary, not a
sufficient condition.

1.2.2 o-convergence

If we take a look at our 56-country dataset, we see that the variance of the logarithm of
GDP per capita increases by half over the period 1951-1992. This means that whatever
is going on in this panel, it is not o-convergence. Economist Danny Quah (1993) asserts
that taking (B-convergence as evidence for o- convergence is the classic ‘Galton’s fallacy of
regression towards the mean’. To underline that process of divergence is actually taking
place, he describes the process of changing GDP per capita’s as a Markov chain. The ‘states’
in the chain are determined by a country’s y divided by the world average GDP per capita:
0,4),[5,3):[3,1),[1,2) and [2,00). The matrix of estimated transition probabilities for a
period of 23 years is
0.76 0.52 0.09 0 0
0.12 0.31 020 O 0
0.12 0.10 046 024 O 9)
0 0.07 026 0.53 0.05
0 0 0 024 095

with the equilibrium distribution over the states being
(0.16,0.05,0.10,0.12,0.57) (10)

Quah concludes that there may be significant 3-convergence, but the sample of countries in
the world can still be modelled as one that drifts apart in two categories: poor and rich.

1.2.3 Panel data approaches

In this sub-paragraph we will briefly discuss two papers that explicitly use panel methods to
measure convergence. They differ in the available data and the approach taken to estimation.

Knight, Loayza and Villanueva, 1993

The authors (KLV) operate with a balanced panel of 98 countries and 5 observations each
5 years apart. Their data starts in 1960. The model KLV use is much like the one in
paragraph 1.1.1, only they include human capital as an explicit factor of production and
allow the state of technology A; to be partly determined by the degree of openness to foreign
trade (F') and the level of government fixed investment (P).



For estimation, the authors employ the Chamberlain IT method. This works as follows:
first, the vector of observations for each country (z;) is regressed on all the explanatory
variables x; using the SUR method:

21 T
=1I
zr xT
Here, the z; are vectors with containing each period’s regressors. It turns out that ITis a 13 x6

matrix. Using the model, the structure of II is restricted and the implied model parameters
are estimated by GMM:

m\li’n (IT — f(D)) 0! (IT = f(¥))

with 2 the variance of II obtained by using SUR. The advantage over the cross-sectional
approach of MRW is that the existence of country-specific effects, possibly correlated with
explanatory variables, is taken into full account. Their results include an estimated 3
of 0.05 [t=8.32], which is a lot higher than MRW’s. This, according to the authors, is due to
the very correlation between the individual effects and y,;g we just mentioned. The coefficients
of other explanatory variables each have the expected sign.

Lee, Pesaran and Smith, 1995

In this working paper the authors (LPS) implement ideas about estimation using dynamic
panel data that were developed in a previous article (Pesaran and Smith, 1995). The following
important conclusions are reached:

e Regressions of the type (8) are very badly biased in their estimation of v and are not
informative about convergence;

e The economic model can be written in the following reduced form:

In(yit) = 06 + xit + uit
5 = Mz'l — i
— %
Uit = Yiliz—1 + €t

The standard Solow-model allows «; to vary across countries and constrains g; to be
equal across the world. LPS estimate the model by maximum likelihood and examine
the effects of restricting either of these variables to be the same across countries. Table 1
shows the results: if an estimate is allowed to vary across countries, the average value is
shown. The number in brackets is the standard error. The sample is that of 102 non-oil
countries over 30 years.

It seems that heterogenous panel bias can have quite an impact on estimations. Re-
stricting one parameter to be zero severely affects the other estimated parameters.

e The cross-country variance does not decrease over time; the hypothesis of no o-
convergence cannot be rejected.

e The so-called t-bar test from Im, Pesaran and Shin (1995) is used to test whether the
set of the individual country’s +; is significantly smaller than unity on average. The
unit root hypothesis could not be rejected. This is an example of the third kind of
convergence testing, mentioned in the beginning of this paragraph.



Table 1: LPS estimation results

Restricted parameter o g
None 0.7600 [0.0124] 0.01737 [0.0005]
g 0.9032 [0.0114] 0.02025 [0.0011]
y 0.8315 [0.0144] 0.01732 [0.0006]
v, 9 0.9589 [0.0050] 0.02179 [0.0006]

2 Estimation

In this section, we will derive the method by which our model shall be estimated. We con-
centrate on the minimum distance estimator or the Generalized Method of Moments (GMM).
This because it allows maximum freedom in specifying the model while delivering asymp-
totically efficient results. The philisophy behind this method is introduced in the following
section. We will thereafter concentrate on the applications of GMM on dynamic panel data.

In section 2.2 we use the working hypothesis that a full panel is available. In practice, this
will not be the case; measures to deal with missing observations are discussed in section 2.3.

2.1 Minimum distance estimation

The distinguishing characteristic of panel data as a separate category is that it runs in two
dimensions. Assume, for example, a sampling process in which observations are numbered
1,..., N (the first dimension) and in which an observation looks like

7"; = [XZ‘J,XZ',Q, .. ,X@T} (11)

Assume r; is i.i.d. from some multivariate distribution with finite fourth moments?, and
further suppose observations X;; are actually vectors consisting of the dependent variables
;¢ and regressors x; . Define w; as the vector of elements of r; ® r; with nonzero variance,
let ;= Fw; and let w be the average over the w;’s. If we assert there exists a linear relation
between the dependent variables and the regressors, it makes sense to consider the minimum
mean-square error linear predictors of y; ¢,

E* (yit|vie) = m'wy
It is clear that 7 is a function of p, since
/ / / —1
7 = Blyiae,) [E(ziaf,)]

Practical estimates of 7 are obtained using the sample equivalents of these expectations which
form, of course, the familiar least squares estimator:

N -1 N

A /

7= (Z $i7t$17t> > iy
i=1 7=1

2This derivation is based on Chamberlain (1984) and Wansbeek and Kapteyn (1994)




So far, not very much seems to be gained with this approach. The advantages become clear
however when we want to restrict the model’s second order parameters. This is equivalent to
restricting the structure of p by demanding it is a function of a lower-dimensional vector 6.
This way, model-specific covariance structures can be imposed on the estimation procedure?.

Estimation now amounts to finding 6%, the true value of §. We therefore employ the
minimum distance estimator which chooses  such that

min [ — £(0)]' An [@ — £(5) (12)
6
with A, symmetric, A, — ¥ almost surely and the asymptotic weighting matrix ¥ positive
definite.

Because w is the average of a series of i.i.d. observations, we can invoke the Kolmogorov
law of large numbers II to assert @ — p almost surely as N — oo. As u = f(6°) we can see
that the expression in (12) converges in probability to

4

[£(6%) = 1 ®)] w [£(6°) - £O)] (13)

which is minimized for only one value in a neighborhood of #°, and that is 69 itself. This
implies the consistency of €,,4.. As for this estimator’s asymptotic distribution, in section 2.5
it is shown that N (emde - 90) — N(0,A), with

A = (FyUFy) FgWV (w;) Wy (Fg W Fp) (14)

with V(w;) the variance matrix of w;. Because this matrix is positive definite, there holds
that A — (F'(V(w;))"1F)~! is positive semi-definite. Therefore, an optimal choice for ¥ is
V~1(w;). This is the case we shall refer to when we speak of the minimum distance estimator.
If A, = I, the unit matrix, the estimator is known as Unweighted Least Squares (ULS).

Small sample problems with GMM

Most of the GMM characteristics are derived in a limiting case. As N — oo, the method
is unbiased and has the distribution in (14). However, Altonji and Segal (1995) argue that
estimating V(w;)~! with the same data that is used in minimizing the expression in (12) may
cause small sample biases. He presents an intuitive argument that runs as follows: suppose
we try to estimate a variance 6 with observations D,;, with ¢ =1,...,N and p=1,...,N;.
The observed variances are

1 N

Z(Dpi - Di)2
N; —1 =1

m; =

3About the function f we assume continuity and at least double differentiability around 6°. We denote

) p= F(0), Fo = F(6°)

F(0) is assumed to be of full column rank for # in a neighborhood of 6°.
4For this and the Lindeberg-Lévy C.L.T., see Amemiya, 1985



and they are independent but heteroscedastic. The variances of the m/s are estimated as

N2 1 i _ 1Y _ i
Wi = (N—].)(l]\f—2)2 NZ(DPZ_DP) - ﬁZ(Dpl_Dp)
K3 K3 /lpzl szl

He argues the @;’s are positively correlated with the m;’s in small samples because outliers
in the Dp; tend to increase both expressions. The bias in 6 can then be written as

6—0= (iwz_l) Zw;l(mi—Emi) (15)
i=1 i=1

The first term is always positive, and in the second the smaller values of m; receive a bigger
weight than the larger ones. They therefore tend to cause a downward bias.

The positive correlation ‘intuitively’ introduced by Altonji can of course be checked using
our data. We will return to this subject in the next section.

2.2 Dynamic models and estimation

We will consider two models to describe the behavior of a country’s GDP per capita through
time; the first model ignores the linear trend growth due to technological improvements:

Yit = VWit—1+ A+ o + U (16)

The second model incorporates the exogenous growth as well, thereby introducing the exoge-
nous variable ‘time’:

Yit = Vi1 T+ A+ gt +a; +uy (17)
In both equations, y;; is the natural logarithm of country ¢’s GDP per capita in year t. Two
error terms are involved in the equations, the individual effect a; and regular error term ;.
The errors are generated as

a; ~ N(0,02)

(83

wy ~ N(0,02)

Assume for a minute that both ¢2 and o2 are zero. This effectively eliminates both error

terms from the model. In model (16), the parameter  determines the existence of limy . Y-

It is assumed +y is positive; if v > 1, the limit does not exist. If v = 1, y;; behaves linearly

in time, its exact path depending on the value of A. Finally, if 0 < v < 1, the limit is equal

to A/(1 — 7). In the latter case, we can talk about convergence in per capita income. In

model (17) we also allow for exogenous technological growth if parameter g > 0. Then, an

economy’s steady state amounts to that situation where growth of per capita income is linear
with rate g/(1 — ). This state is attained if 0 <y < 1.

We shall first deal with the estimation of model (16). Then, in section 2.4 we shall extend
the model as in equation (17) and enhance our method of estimation. For now, however, we
will work with the first model only.

Call the number of countries in our panel N, each with T" annual observations. Define the
vectors y; as the observations for country i, y;, stacked from ¢t = 1,...,7T. Now construct the



following (7" — 1) x T matrix

-y 1 0
D= :IR—’}/IL (18)
0 —y 1

implicitly defining matrices I and I. Create (T'— 1) x 1 vectors ¢; as Dy;.

Each element €; is equal to A + a; 4+ u;; and thus has expectation A. We will first discuss
a method of estimation that removes the term A + «; from €;. In the next sextion, we will
attempt to estimate \ and o2 separately.

Introduce the (T'— 1) x (T'— 1) ‘within’-matrix W,

1
1

T-1

W=1Ip_ 4 — (br—1tp_y), L= |
1
This matrix ‘removes the average’ of a vector. Defining € = We;, we see that Eef = 0 and

E(e)(e}) = WS, W = 02W, with X, = 02 - I. Therefore, the variance of € is a function of

02, We can write this function as

E vec [(€])(€})] = Eef @ €] = o2vec [W] Ro2

1 u

with R = vec(W).

With this specification we arrive at the situation that we started with in equation (11). We
have N countries that each supply a (supposedly) i.i.d. time series, whose variance after an
algebraical transformation conforms to a theoretical structure. All we need to do now is find
the value of 02 that minimizes a criterion like (12). Because this criterion happens to be linear
in 02, that can be done by projecting the transformed data on the linear subspace orthogonal
to the one spanned by the columns of R. Let Mg be the projection matrix orthogonal to R
taking redundant restrictions due to symmetry into account:

1 _
Mg = §(I(T—1)2 +Pr17r1) - R(RR) 'R

with Pr_yr—1 the symmetric commutation matrix of order (7' — 1)? x (T — 1)?. Define
variables m; as

m; = Mp(ef @ ¢€))

Our model then dictates that

1 & 1 &
E[NZMR(E:@)E:)] :EN Zmizo (19)
i—1 i=1

This expression can be seen in the light of equation (12) as follows: the ‘unity part’ of Mg
supplies a term resembling w, whereas the ‘projection part’ fits the optimal 8, optimal in the
least squares sense. We still have one parameter left unspecified, however; when using the
matrix D to compute €, we implicitly used the parameter . In order to find this parameter,
we have to directly invoke the GMM principle and minize the expression

m' Apm (20)

10



with m = % Zf\il m; and A,, an estimator of the generalized inverse of the variance of m;.
The former expression can be written as

N
m = MR(W®W)(D®D)%Z(%®%) (21)
=1

The latter expression involves the variance of m;. That variance is formally defined as
E((m; — Em;) (m; — Em;)). However, since Em; = 0, we can write
V(ms) = E(myms) = E(P(Dy: ® Dyi)(Dy; @ Dy:)'P')
= E(P(Dyy;D' ® Dy;y;D')P’)

denoting P = Mp(W ® W) for notational convenience. The sample counterpart of this
expectation constitutes our estimator of V(m;):

_ 1 Y . . . .
V(mi) = > (P(DyyiD' © Dy, D) P') (22)
i=1

1=

Notice that the dimensions of this matrix in the context of long macro-economic time series
are huge. With our T" well in excess of 100, it looks like computational problems might drive
us in the arms of ULS rather than GMM.

Finally, the standard error of this estimator, given in formula (14), can be simplified
somewhat depending on our choice for ¥, the asymptotic weighting matrix. Take a look at
the expression in (14) to see that we can write

VN (e =) = N (0, (65 V" (mi)y) )

with k, = E(0m;/0y) if we use what we have called the GM M-estimator. If we use un-
weigthed least squares we have

. KLV (m;) Ky
VN (Ymae =) = N (O; W)
In the following, again define P = Mp(W @ W) for convenience.
m; = P(Dy;) ® (Dys)
= P((Ur—Ip)y:) ® (Ir — VIL)ys)
= P [(IR?JZ' ® Iry: — vILys @ Iryi — YRy ® Iy + 7 ILy; © ILyz}
and thus

8mi

v

= P[-Iry;i ® Igy; — Iry: @ Iry; + 2vILy; @ ILy;]

= =Py ® [Ip — 1)y + Ir — vIL]ys ® ILyi]
= —P[Ipy; ® Dy; + Dy; ® ILy;]

the last step using the equality D = Ir — I, from equation (18). Using the same equality,
we can continue

om; 1
671 = —;P [—Iry; ® Dy; — Dy; ® Dy; + Dy; ® Iry; — Dy; ® Dy;)
ami 1
= —E=P[Ipy; ® Dy, + Dy; ® Iryi]
oy Y

11



the last step using the restrictions implied in equation (19). If we use the fact that m is equal
to the average of the m;’s and insert the estimated value of v, we can actually estimate the
derivative:

M=

P

x>

% ' [IRyi ® Dy; + Dy; ® IRyi]

1

Il
—_

S

N
PIz@D+D &Iy l%Zyi@)yi} (23)
i=1

This way, we have a ready-to-use expression for the standard error of our estimate of +,
without having to bother with numerical derivatives.

2.3 Missing observations

In the previous section, it was assumed that a balanced panel of observations was available.
In the perilous world of international macro-economic reality, however, we often find panels
with over half the observations unavailable. In our panel, just under 35 % of the data is not
there, rendering the methods of the last section useless unless adapted.

The adaptations to cope with missing data are introduced in this section. We will actually
show two ways in which the researcher can tackle the problem. As it turns out, one of these
methods clearly outperforms the other in our specific context.

Method # 1: Pretending to have a full panel

Look again at formula (21). For estimation purposes, all the available data is condensed in
the variable m. If we could find a way to create a missing-observations version of this variable,
we can proceed with the rest of the approach as if nothing were the matter. And, as a matter
of fact, we can do just that by simply taking the average over the values that are there, and
neglecting the values that aren’t.

Define variables k; ; ,, as follows:

kijm = 1 if both y;; and y; m are there.

0 if y;; or ¥;m is not there.

with ¢ = 1,...,N and j,m = 1,...,T7 — 1. Now define K;,, = z‘]\ilki,j,m and K the
(T —1)? x 1 vector of Kj,,’s. Substitute 0 for all missing observations and we have our
missing-variables version of (21):

m* = Mp(W @ W)(D @ D) [diag(K)] ™ Y (si ) (24)

The same variable could be used in equations (22) and (23).

However, the story is not over yet. When using patchup-methods like this, we have to
remember the implicit assumptions that are being made. In this case, the core assumption
is that the average over the available observations instead of over all the individuals has the
same expectation as the latter. This because the accuracy of our estimator derives directly

12



from this expectation. This assumption could be violated if the absence of observations were
somehow correlated with explanatory variables of our model. Suppose for instance that we
tried to explain consumer expenditure on food by the consumer’s income, and that poor
people categorically refused to reveal their income. This would leave us with a panel of just
rich people, whose influence of income on food expenditure is, by Engel’s law, far less. Biased
coefficient estimates may thus result from these latent correlations.

The influence of correlated missing observations on dynamic panel data are even more
intricate. It is hard to give a general direction of the bias caused by this problem. Our feeling
when using the above method was that it underestimated the parameter v somewhat. The
following serves to illustrate how such underestimation may come about.

Looking at the pattern of our data, it seems that less developed countries have more
observations missing than western industrial panel members. The observations that are avail-
able for those less developed countries are clustered at the end and at the beginning of our
period of observation. Both these characteristics make sense. With development comes a
better administration of a country’s production and population, which explains the tendency
for richer countries to be able to supply more data. Also, as other countries develop through
time, their ability to supply data increases which explains the clustering at the end. The
clustering at the beginning is a feature of the specific research report we used, which tried
to give some idea of world development over the years and estimated GDP per capita for all
countries for a number of key years, some of them in the first observational round.

All in all, we may conclude that there is reason to believe that the values of y;; may be
positively correlated with the probability that country i’s GDP per capita is observed in year
t. Looking at the values taken on by the average of the available observations each year, it
seems that after an initial low value, there is a period in which only the western nations supply
data and the average sores. This period is then followed by a decline because of increasing
availability of other country’s data.

We now formalize this pattern in an, admittedly, crude way. Suppose we only have data
from one individual for three time periods. Call the observations yi,y2 and y3. We now
estimate the parameter v imposing the model y; = yy;—1 + A + u¢ by the above method.
This means we calculate v as

n;yinm’m (25)
hn Y1
_ -y 1 0 -y 1 0
Y3 Y3
In this case,
1 1
- 500 0
_ 2 2 _
W‘l—% %]’ Me=1"900 o
-3 00 4

We can elaborate m as

%MR [(7(92 — 1) + (y2 —3)) [ _1 H ® [(7(@/2 — 1)+ (y2 — 43)) [ _1 H
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= %MR(’VQ(?JQ —y1)? = 29(ys — )2 —y1) + (43 —92)*) | | (26)
1
so that minimizing (25) is the same as minimizing f(vy) with
FO) = 2 —y1)® = 2v(y2 — v1)(ys — y2) + (y3 — y2)°
L — 20—~ 20 - ) - 2) (27)

This means we can write 4 as (y3 — y2)/(y2 — y1). Remember now that our data showed
an unnatural increase in the middle period. In this stylized example, that would mean an
exorbitant value for ys, which has the effect of lowering the estimate of v and introducing a
negative bias.

Method # 2: Tiny time series

If you use a time series with annual observations that spans more than a century you are bound
to run into some missing observations. Large parts of the series may be intact, though. It is
this phenomenon, combined with the fact that the model does not change over time, that we
use in the second method.

Modify the panel in the following way: every time series y; is split up into several smaller
parts, all with the same length 7%, with T* > 3. Some data may be lost in the process, e.g.
if the number of observations does not divide by T™ we lose some border observations, or if
there exist sub-series smaller than 7.

We now have a complete panel of observations, with a larger NV than before and a smaller
T, equal to T*. We need not worry about any problems this method may cause in terms of
bias: the same model applies to the small series as to the larger ones. There are some possible
drawbacks, though:

e The possible loss of data if T* is an awkward number. This is, of course, in the hands
of the researcher.

e The artificial nature of the panel may reflect upon the estimates of the parameters’
standard errors. This because the variation present in the panel is now partly created
by the researcher himself. The direction of this effect is not entirely clear from the
outset.

e Another point of weakness may be the possibility of domination of the data by countries
that have a relatively large amount of data available. If it should be so that countries
which are poor have relatively large gaps in their time series, this may influence our
results. This is especially so if those poor countries inherently also have a different value
of v, instead of the assumed uniformity of this parameter.

Of course, this method of estimation has some advantages as well: apart from having a
complete panel with short time series, we also experience an increase in the number of
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‘individuals’. This may improve our estimates as they were derived asymptotically as
N — oo.

2.4 Practical estimation and Exogenous Variables

With either of the two methods for dealing with missing observations, we find ourselves
having to optimize a criterion like (20), with A,, the unit matrix. This section deals with the
practical aspects of that optimization, as well as with the incorporation of exogenous variables
in that routine. We shall first assume a situation in which m is given by equation 21, and
no exogenous variables are present. Then we consider the case where exogenous variables are
included in our model. All the other cases can then easily be derived.

So, firstly, our criterion looks like min,m/m, with

m = Mp(W @ W)(D ® D)S (28)

with S summarizing our data. If we want to write m as a function of v, we split up the
expression into

M= Mp(W @ W) (v2(IL ® I5)S = (I, @ [n)S = Y(In ® 1) + (In @ Ir)S)

For ease of notation, we rewrite this into an expression with three new variables Sy, S1, 5%
that each contain some of the data:

m = ’}/252 + 751 + So

The definitions of the S, are implied. The form at which we have now arrived enables us to
write (28) explicitly as a function of :

min S48+ 2518y + 4% - (8151 +25550) + 2 - 2818y + 7 - 555,

With all the S; known, this criterion is easily minimized using an analytical first and second
derivative in the Gauss-Newton rootfinding procedure.

We now turn to our second case, in which dispose of the premultiplying matrix W and
incorporate exogenous variables ;. We now need to minimize a different criterion:

min G g (29)
1 N
Mo = > Mg[(Dyi — gxi) ® (Dy; — ga:)]
=1
D = =l +1Ig

This criterion can again be split up into a polynomial in the variables ¢ and 7y, summarizing
the data in six new variables T7,...,T§.

m = T+ gD +~Ts + gyTy + ¢*Ts +7*Ts

5This term becomes more and more abstract as we continue our modification of the data. We mean the
number of observed time series in the panel.
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N
Ty = Mp(Ip®Ir)> (yi @)

i=1
N
Ty = —Mr(Ir®1IR)> (4 ®x; +x; ®y;)
i=1
N
Ty = —Mp(r@IL+I1L®IR)Y (yi @y:)
i=1

M=

N
Ty = MplIr® 1)) (2 @) + (L ®1Ir) Y (i ® 21)]
=1

.
Il
—_

M=

s = Mr(r®Ir)) (2 ®wi)

<.
Il
—

Mz

Ty = ]VfR(IL®IL) (yi ®ys)

@
Il
—

All the T, can readily be computed provided the data are complete. They also allow us to
analytically write out criterion (29)

m'm = a|+asg+ a392 + a4g3 + a5g4 +agy + a7’y2 + ag'y3—|—
+ agyt + a1079 + an1y?g + 127’9 + a1379* + a1 g* + ar579°

ay = T{Tl ag = TéTﬁ
ay = 2T2,T1 alyg = 2T{T4 + 2TéT3
az = TéTQQTEI)Tl aj; = QTéTﬁ + 2TéT4
a, = 2T2,T5 alp = 2T6/T4
as = TEI)T5 a3 = QTEI)Tg + 2T5T4
ag = 2T1,T3 alg = T4T4
ay; = TéTg + 2T1/T6 als = 2T4T5
ag = 2T3,T6

Again, using theoretical partial first and second derivatives, this criterion can readily be
minimized with the two-dimensional Gauss-Newton procedure.

2.5 Appendix

Because w is the average of a series of i.i.d. observations, we can use the Lindeberg-
Lévy C.L.T. to claim
VN (@ — ) — N(0, V(w,)) (30)

with V(w;) the variance matrix of w;.
For the following, it is important to recognize that 6,,4. really is a function of w. We will
therefore explicitly introduce the function 0(x) : R — T C RP, which is defined by

min A(0,@) = min [@ — f(0)] An [ ~ £(0)] (31)

ocY 0cY

Note that 8(f(6°)) = 0. We can use relation (30) and the §-method to assert

VN (fnge = 6°) = N (0, do(z) d0'(z) ) ) (32)

- V(wi)

da’ dx
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In order to find an expression for the derivatives in this formula’s right hand side we use
the first-order condition implied by the minimization in (31) to write

OA(0(), w)

a0() ~2- F' Ay (@ — f(0)) =r(f,w) =0

Differentiating both sides of this equation to w’, we get

O*A0(-), w) 90(w) O*AO(),w)
90()00' () ow o0()ow’

or, in the notation with (6, w),

or(0(-),w) 06(w) N or(6(-),w)
06(-)! o’ ow’

This can then rewritten to

00(w) or(0(-), @)\ ar(6(-), o)
o’ :_( 90(-) > o’ (33)

This form implies that any constants in front of r(-,-) will cancel; we therefore strike the —2
factor for now. The two matrices on the right can be computed as follows: we see that

alr‘(97 ) . n - 0 ] _
g = = —F A+ g (FAu@ = f())
. R
- _— / —_— 1) —_— . / . .
= —F'A,F+ 0 (Vec {(w fE)'A,- F ID
= EAE (T 0 [()A) T
SO p]ima%(g,") = —F)UFp. The second matrix in (33) can also be computed:
87“(~,.’E) o
ox! Fdn

straightforwardly, so plimag(—g'ﬂ’,m2 = —FjV. Inserting these two values implies

phm% = (FVE) R

This now allows us to explicitly write out the asymptotic distribution of 4.

3 Results

In this section we will showcase the results from implementing the various methods of the last
section on our data. First, the data is introduced in the next section. Then, we estimate the
two models from the last section using the two methods for coping with missing observations.
We conclude in section 3.3
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3.1 The data

The data comes from Maddison (1995), and forms a panel of 56 countries for which the GDP
per capita is monitored in the years 1820, 1850 and 1870 thru 1993. In our research, we
omit 1820 and 1850, thus only using each country’s last 124 years. Of the 6944 possible
observations, 4564 are actually there. Figure 77 shows each year’s average y and the number
of observations available for that year. Notice that the gaps in our data occur especially in
the beginning of the sample period. There are some spikes in the number of observations,
where y was estimated for almost the whole panel in some key year. Whenever these spikes
occur, we see a drop in the average y, indicating that in the beginning of the sample period,
the poorer countries tend to supply less data than the richer countries.

For some of the methods of estimation, we are required to convert the panel into one
with smaller time series and a larger number of individuals. Table 2 shows how the number
of observations and complete time series varies with the different length of those ‘tiny time
series’

Table 2: Data availability

Series length  # of series Total # of observations

3 1467 4401
4 1087 4348
5 856 4280
6 713 4278
7 606 4242
8 525 4200
9 461 4149
10 421 4210
20 201 4020
30 125 3730
40 97 3880
50 45 2250

As one would expect, the number of observations used decreases with the length of the time
series. Requiring long series also has the effect of eliminating a lot of data from developing
countries, who are often unable to supply lengthy series.

3.2 [Estimation results

3.2.1 Method # 1: Pretending to have a full panel

Using this first method, described in section 2.3, with no exogenous technological growth,
gave the following results:

4 = 0.9193
V(§) = 21942103

As we already noted, this result may be biased downwards somewhat.
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3.2.2 Method #2: Tiny Time Series

We estimated the model with and without exogenous technological growth, with ULS and
GMM and with a number of different sizes of the ‘tiny time series’. The results are summarized
in the following tables.

Table 3: Exogenous Growth, ULS

Series length 4 [standard error] g [standard error}
3 1.0865 [...] -0.0074221  [6.7895 - 10°]
4 1.0301  [1.8631-10"7] -0.0019693  [2.6375- 10 °]
5 0.9869  [1.9907-10"7] 0.0017753  [1.2882-10 9]
6 1.0056  [3.3805-1077] -0.0001370  [6.9192-1077]
7 0.9897  [4.5296-10"7]  0.0008094  [6.5062-107]
8 0.9979  [1.6397 - 0 7 0.0011053  [5.5438 - 1077
9 1.0047 [1.2424-1077]  -0.0003490 [2.9144 - 1077]
10 1.0012  [1.1976-1077] -0.0000898  [1.8252-1077]
11 0.9983  [2.5726-10"7]  0.0004098  [2.5937-10 7]

Table 4: Exogenous Growth, GMM

Series length 4 [standard error] g [standard error]
3 1.0865 (] -0.007422 ]
4 0.6127 0.14681]  0.041776 0. 008894]
5 0.8487 0.00156]  0.010930  [9.9713 - 1079]
6 1.0737 0.00113] -0.009877  [7.7316-1075]
7 1.1711 0.00159] -0.018259  [9.6677 - 10~9]
8 0.8855 [0.00026]  0.005904 [1.4874 - 1077]
9 1.2151 [0.00059] -0.023064 [3.6425 - 1077]
10 1.3729 0.00044] -0.006792  [2.0655 - 10~5]
11 0.8572 0.00020]  0.007480  [9.0109 - 10~9]

Tables 3 thru 6 allow for a few careful conclusions. First of all, it appears that for these small
values of N, ULS works better than GMM. The estimates from the former fluctuate less
over the different lengths of the time series. However, the small standard errors seem a little
exaggerated when looking at the different parameter estimates in the same table. Secondly, we
have a case of heterogeneous panel bias: leaving out one parameter (exogenous growth) clearly
influences the remaining estimates. Thirdly, the question whether v is significantly smaller
than unity cannot be answered from these tables. They either show 4 both significantly above
and below one in the same table, or are inconclusive. To test for the presence of a unit root
in our data, we introduce a method to combine the observations.
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Table 5: No Exogenous Growth, ULS

Series length 4 [standard error]
3 0.7514 [0.0661]
4 0.9990 [0.0117]
5 1.0030 [0.0044]
6 1.0043 [0.0025]
7 0.9969 [0.0029]
8 1.0072 [0.0040]
9 1.0016 [0.0012]
10 1.0004 [0.0006]
11 1.0016 [0.0011]

Table 6: No Exogenous Growth, GMM

Series length 4 [standard error]
3 0.7514 [0.0686]
4 1.1183 [0.0162]
5 0.9021 [0.0138]
6 0.8482 [0.0208]
7 0.8580 [0.0136]
8 1.0326 [0.0070]
9 1.0130 [0.0019]
10 1.1533 [0.0135]
11 0.9481 [0.0071]

3.2.3 Fisher’s P, unit root test

R.A. Fisher (1932) introduces a method to combine several independent unit root tests into
one single number. This test uses the observed significance level of the different tests, P;. This
‘p-value’ is the probability that the result occured under the hypothesis of a unit root. Under
this hypothesis and random sampling the ‘p-value’ has a uniform distribution on [0, 1]. Com-
bining the different P; as x* = —2 > In(P;) gives a statistic that, under the null hypothesis,
has an exact 2 distributlon with 2NV degrees of freedom.

We used the method of tiny time series described above to compute 4 and its standard
error for all 56 countries separately. We then compute each country’s P value under the
hypothesis of a unit root. These P values are combined into a statistic x?. For different sizes
of the time series, the different results are in table 7. In this table, estimation is done using
ULS. Using GMM on these small samples resulted in such things as negative estimates of the
standard error.

It seems that the hypothesis of a unit root is rejected if we use really small time series (size
3 and 4). For the other lengths, the null of a unit root cannot be rejected. This still leaves our
question about the possibility of v = 1 unanswered, though. However, that can be remedied
by just using all the P-values from the different countries and time series sizes and computing
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Table 7: Unit root tests

Series length (t) X: P value using x?(112)
3 221.853 3-107°
4 151.089 0.0082
5 77.949 0.9940
6 106.933 0.6176
7 113.085 0.4535
8 109.039 0.5616
9 121.403 0.2560
10 83.662 0.9791
11 81.483 1.0000

one statistic. Under the null of a unit root, this statistic has a x?(1008) distribution. Using
all the data created to construct the previous table, we computed x? = 1046.497, so that the
‘p-value’ under the null is around 0.194. Clearly, this is not small enough to reject the null
hypothesis of a unit root.

3.3 Conclusions

The methods derived and applied in the previous sections all in all appear to be a bit volatile.
The estimate obtained from method # 1 is conspicuously low, and those from method # 2 suf-
fer from heterogeneous panel bias and vary significantly over the different time series lengths.
However, Fisher’s Py unit root test allows us to combine the different pieces of information
into a single test statistic so that we may provide an answer to the question ‘to convergence
or not to converge’. With the available data and methods, the answer is clear: we are not
able to reject the hypothesis ‘not to converge’.
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